Simon J. Zeder, Balthasar Blülle, Beat Ruhstaller, and Urs Aeberhard, Opt. Express 32, 34154-34171 (2024)
https://doi.org/10.1364/OE.522953
This paper presents a multiscale optical model developed to accurately quantify photon recycling (PR) and luminescent coupling (LC) in optoelectronic devices such as solar cells and LEDs. Photon recycling, the process of photon emission, re-absorption, and re-emission, can significantly enhance device efficiency, particularly in materials like GaAs, metal halide perovskites and even crystalline silicon. To accurately account for re-absorption effects, the model treats light absorption and emission equally, considering the full spectrum of internal modes within the device. This approach stands out from conventional methods, which focus solely on exterior-coupled modes.
The framework integrates two key propagation models:
Coherent Wave-Optical Model: Applied to thin-film layers where light interference effects are significant, avoiding unphysical divergencies for emitters embedded in absorbing media and ensuring consistency with detailed balance principles.
Incoherent Ray-Optical Model: Used for optically thick layers where coherence is lost, treating phase relations as irrelevant.
The model also accounts for light scattering at textured surfaces, essential for devices like perovskite –silicon tandem solar cells. By merging these approaches, the paper provides a robust framework for computing local emission, re-absorption, and energy flux rates in devices with complex structures. Importantly, this allows for a detailed understanding of the impact of photon recycling on device performance, including enhanced external quantum efficiency (EQE) in LEDs and increased open-circuit voltages in solar cells.
The model is validated through comparisons with analytical solutions, showing excellent agreement, and applied to a textured perovskite solar cell showcasing its capabilities. This validation confirms that the model can reliably be applied to real-world devices, offering a powerful tool for optimizing the performance of next-generation optoelectronic systems.
Key Takeaways:
∙ Comprehensive multiscale approach merging coherent and incoherent light models.
∙ Applicability to complex textured devices like perovskite solar cells and LEDs.
∙ Quantification of local re-absorption and energy flux rates.
∙ Validation through comparison with analytical solutions.